文章编号: 0253-2239(2008)02-0305-06

Tm³⁺ 掺杂 SiO₂-Al₂O₃-PbF₂-AlF₃ 玻璃的光谱特性

林琼斐¹ 夏海平¹ 王金浩¹ 张约品¹ 杨钢锋² 张勤远² ¹宁波大学光电子功能材料重点实验室,浙江宁波 315211 ⁽²华南理工大学光通信材料研究所特种功能材料教育部重点实验室,广东广州 510640)

摘要 用高温熔融法制备了不同 Tm³⁺ 摩尔分数掺杂的摩尔分数比为 0.3(SiO₂):0.1(Al₂O₃):0.1(AlF₃): 0.5(PbF₂):x(Tm₂O₃)(摩尔分数 x=0.5%,1.0%,2.0%,3.0%)玻璃。从吸收光谱特性出发,应用 Judd-Ofelt 理 论,计算得到了 Tm³⁺的 J-O 强度参量(Ω_2 , Ω_4 , Ω_6)及 Tm³⁺各激发能级的自发辐射跃迁概率、荧光分支比以及辐射 寿命等光谱参量。在 808 nm 波长的激光二极管激发下,研究了不同 Tm³⁺掺杂摩尔分数下玻璃在约 1.47 μ m 与约 1.8 μ m处的荧光特性,在掺杂摩尔分数约达到 2.0%时,在 1.8 μ m 处的荧光强度达最大,然后随着掺杂摩尔分数 的增大,其荧光强度反而降低。作者从 Tm³⁺的交叉弛豫与摩尔分数猝灭效应解释了这一荧光强度变化的规律,同 时,根据 McCumber 理论计算了 Tm³⁺跃迁³ H₆→³ F₄ 的吸收截面和跃迁³ F₄→³ H₆ 的受激发射截面。

关键词 光学材料;掺铥氟氧化物玻璃;光谱性质;交叉弛豫效应

中图分类号 TQ171 文献标识码 A

Spectral Properties of Tm³⁺-Doped SiO₂-Al₂O₃-PbF₂-AlF₃ Glasses

Lin Qiongfei¹ Xia Haiping¹ Wang Jinhao¹ Zhang Yuepin¹ Yang Gangfeng² Zhang Qinyuan² ¹Key Laboratory of Photo-Electronic Functional Materials, Ningbo University, Ningbo, Zhejiang 315211, China ²Key Laboralary of Specially Functional Materials of Ministry of Education, Institute of Optical Communication Materials, South China University of Technology, Guangzhou, Guangdong 510640, China

Abstract Glasses with the compositions of $0.3 \text{SiO}_2 \cdot 0.1 \text{Al}_2 \text{O}_3 \cdot 0.1 \text{AlF}_3 \cdot 0.5 \text{PbF}_2$ doped with different Tm^{3+} concentration (x=0.5 mol%, 1.0 mol\%, 2.0 mol\%, 3.0 mol\%) were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω_2 , Ω_4 , Ω_6) of Tm^{3+} were calculated, by which the radiative transition probabilities, fluorescence branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm laser diode excitation) at $\sim 1.47 \ \mu\text{m}$ and $\sim 1.8 \ \mu\text{m}$ of various concentration Tm^{3+} -doped glasses were studied. The emission intensity at $1.8 \ \mu\text{m}$ reaches to the maximum when the Tm^{3+} -doping concentration is near to be 2.0 mol% and then decreases at higher concentration. The mechanism of the change of the fluorescence intensity was explained from the cross-relaxation effect and the concentration quenching effect of Tm^{3+} . The absorption cross section of ${}^3H_6 \rightarrow {}^3F_4$ transition and the stimulated emission cross section of ${}^3F_4 \rightarrow {}^3H_6$ transition of Tm^{3+} have also been calculated according to McCumber theory. Key words optical materials; Tm^{3+} -doped oxyfluoride glasses; spectral properties; cross relaxation effect

1 引 言

发光材料在显示屏、光学放大器、固体激光器及 光纤放大器等领域发挥越来越重要的作用^[1,2]。由 于在遥感、雷达、军事及医学中的诸多应用,对人眼 安全的 2 μ m 波段的固体激光在近十几年得到了飞 速的发展^[3,4]。稀土离子 Tm³⁺ 中³ $F_4 \rightarrow$ ³ H_6 的能级

收稿日期: 2007-05-21; 收到修改稿日期: 2007-06-29

基金项目:浙江省自然科学基金(Y406220)和宁波市博士基金(2005A610010, 2005610023)资助课题。

作者简介:林琼斐(1982-),女,浙江台州人,硕士研究生,主要从事光学玻璃及其光谱性质方面的研究。

E-mail: linqiongfeide@163.com

导师简介:夏海平(1967一),男,浙江舟山人,教授,博士,主要从事光学材料及其性能方面的研究。 E-mail: hpxcm@nbu.edu.cn 跃迁可产生约 2 μm 波段范围的荧光辐射,以 Tm³⁺ 为发光中心的固体激光,当掺杂摩尔分数达到理想 的程度时,在受到 800 nm 的 AlGaAs 激光二极管激 发下,由于 Tm³⁺间存在着很强的的能量交叉弛豫 效应(³H₆,³H₄→³F₄,³F₄),可望达到 200%的量子 效率^[5]。

近年来,由于氟氧化物玻璃具有良好的机械强 度与化学稳定性以及较低的基质声子能量等综合优 势性能,稀土掺杂的氟氧化物玻璃(FOG)成为各国 学者研究的热点^[6~8]。较低的基质声子能量可有效 地降低 Tm^{3+} 的无辐射跃迁概率,从而提高 Tm^{3+} 在 约 2 μ m 的发光效率;同时,具有一定机械强度与物 化稳定性的氟氧化物玻璃可望制备成预制棒与拉制 成光纤。

本文在文献[8~10]的基础上,选择 SiO₂ 和 PbF₂ 以 3:5的摩尔比例,调整 Al₂O₃ 和 AlF₃ 的比 例,制备了 0.3SiO₂-0.1Al₂O₃-0.1AlF₃-0.5PbF₂ 氟 氧化物玻璃,并在其中掺杂了不同摩尔分数的 Tm³⁺。测量玻璃的吸收光谱及荧光发射光谱,并用 Judd-Ofelt 理论计算了 Tm³⁺的强度参量及相关的 光谱参量,研究获得约 2 μ m 荧光发射的理想 Tm³⁺ 掺杂摩尔分数,为其研制成光纤与中红外光纤激光 器件作准备。此外,根据 McCumber 理论,计算了 Tm³⁺的³H₆→³F₄跃迁的吸收截面和³F₄→³H₆ 跃 迁的受激发射截面。

2 实 验

实验所用的氟氧化物玻璃样品的配料组成为: 0.3(SiO₂):0.1(Al₂O₃):0.1(AlF₃):0.5(PbF₂): $x(Tm_2O_3)(摩尔分数 x = 0.5\%, 1.0\%, 2.0\%,$ 3.0%),获得的玻璃样品分别用 A1,A2,A3,A4 进 行编号。各化学原料均为分析纯。将上述原料按照 配方精确称量 30g的玻璃料,使其充分混合,然后加 入到 30 ml 的铂金坩埚中。置于预热到约 1400 ℃的 硅碳棒高温炉中并在此温度下熔制 40 min,然后将 所得的玻璃液浇注到~200 ℃的铸造模具上,在玻 璃态转变温度 T_g 附近保温 2 h,然后以 20 ℃/h 的 速度降温至 250 ℃时,关闭电源自然冷却至室温。 最后将样品加工成厚度为 2 mm 二大面抛光的块体 用于光谱测试。

差热曲线由型号为 CRY-2(上海)的差热分析 仪测得。吸收光谱由 Perkin-Elmer-Lambda 950 UV/VIS 吸收光谱仪测得;红外吸收光谱由 FTIR-8400 红外光谱仪测得,测量范围 2.5~10 μm (4000~1000 cm⁻¹);荧光光谱由法国 J-Y 公司的 Triax 320 荧光光谱仪测得。所有的性质测定都是 在室温下进行。

3 结果与讨论

3.1 差热分析

为了研究玻璃样品的热稳定性,测定了玻璃基质的差热分析曲线,如图 1 所示,温度范围 100~ 1000 ℃。玻璃的转变温度(T_g)、结晶起始温度 (T_x)以及结晶温度(T_c)是研究玻璃热性质的重要 参量。从图 1 可以看出该玻璃体系的 T_g , T_x , T_c 值 大约分别为 377 ℃,463 ℃,489 ℃。由于玻璃的热 稳定性大致可由 $T_x - T_g$ 的数值大小来衡量。该玻 璃的 $T_x - T_g$ 的值为 86℃,与文献[8,9]相比,热稳 定性有所提高。

图 1 基质玻璃的差热分析曲线 Fig. 1 The differential thermal analysis curve of matrix glass

3.2 吸收光谱和 Judd-Ofelt 分析

图 2 为不同掺杂摩尔分数下玻璃样品在 350~ 2100 nm范围内的吸收光谱,从图 2 可见,从紫外到 近红外都有较强的吸收,可观察到 1669 nm, 1211 nm,791 nm,685 nm,470 nm 五个主要的吸收 带,分别对应于从基态³ H_6 到激发态³ F_4 ,³ H_5 ,³ H_4 ,

图 2 Tm³⁺ 掺杂玻璃中的吸收光谱 Fig. 2 Absorption spectra of Tm³⁺-doped glasses

³*F*_{2,3}和¹*G*₄的跃迁。在图 2 中已标出对应的能级。 与 Tm³⁺在其他氟磷酸盐、氟铝酸盐基质^[11,12]中相 比,其谱带的短波吸收端向低能量方向移动,能量大 于激发态¹*G*₄以上的吸收谱项均被基质的吸收所掩 盖。从图 2 还可以看出,随着 Tm₂O₃ 掺杂摩尔分数 的增加,吸收强度也随之增加,同时峰值位置几乎无 变化。 跃迁的约化矩阵元,用最小二乘法拟合得到掺杂摩 尔分数为 0.5% 玻璃样品 A1 的三个 J-O 参量 Ω_i 值 分别为 $\Omega_2 = 2$. 398 × 10⁻²⁰ cm², $\Omega_4 = 1$. 195 × 10⁻²⁰ cm², $\Omega_6 = 1$. 613×10⁻²⁰ cm²。理论振子强度 f_{cal} 和实验振子强度 f_{exp} 列于表 1 中。计算获得的自 发辐射跃迁概率 A_i ,荧光分支比 β ,及辐射寿命 τ_{rad} 列于表 2。

根据 J-O 理论^[13,14],并应用文献[15]中 Tm³⁺

表 1 Tm³⁺相应跃迁的理论振子强度 f_{cal}和实验振子强度 f_{exp}

- rabie r - racoreticanty and experimentally observed oscillator strengths relevant to several transitions of ri	Table 1	Theoretically and	d experimentally	v observed oso	cillator strengths	relevant to sev	veral transitions o	f Tm	3+
--	---------	-------------------	------------------	----------------	--------------------	-----------------	---------------------	------	----

Oscillator	$^{3}H_{6} \rightarrow ^{1}G_{4}$	$^{3}H_{6} \rightarrow ^{3}F_{3}$	$^{3}H_{6} \rightarrow ^{3}H_{4}$	$^{3}H_{6} \rightarrow ^{3}H_{5}$	${}^{3}H_{6} \rightarrow {}^{3}F_{4}$	> /10=7	
strength /10 ⁻⁶	467 nm	685 nm	791 nm	1211 nm	1669 nm	0 _{rms} / 10	
$f_{ m exp}$	0.502	3.209	2.502	1.631	2.024	0.49	
$f_{ m cal}$	0.571	3.207	2.501	1.633	2.024	0.49	

表 2 Tm ³⁺	的波长、	自发辐射跃进	壬概率、荧光	分支比及辐射寿	命
----------------------	------	--------	--------	---------	---

Table 2 Wavelength, spontaneous transition probability, fluorescence branching ratio and radiative lifetime of Tm³⁺

Transition	Wavelength /nm	A_i/s^{-1}	β	$ au_{ m rad}/{ m ms}$
${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	1788	155.932	1	6.413
$^{3}H_{5} \rightarrow ^{3}H_{6}$	1208	224.251A ^{ed}	0.990	4.054
\rightarrow ³ F_4	3724	2.400	0.010	
${}^{3}H_{4} \rightarrow {}^{3}H_{6}$	795	1049.883	0.905	0.862
\rightarrow ³ F_4	1431	93.555	0.081	
\rightarrow ³ H_5	2323	16.609 A^{ed} + 15.231 A^{md}	0.014	
${}^{3}F_{3} \rightarrow {}^{3}H_{6}$	691	2278.605	0.889	0.390
\rightarrow ³ F_4	1125	83.673 A^{ed} +120.603 A^{md}	0.033	
\rightarrow ³ H_5	1612	198.354	0.077	
\rightarrow ³ H_4	5269	3.258	0.001	
${}^{3}F_{2} \rightarrow {}^{3}H_{6}$	665	861.040	0.562	0.653
\rightarrow ³ F_4	1059	418.968	0.273	
\rightarrow ³ H_5	1479	242.608	0.158	
\rightarrow ³ H_4	4072	9.743	0.006	
\rightarrow ³ F_3	17921	0.010 A^{ed} + 0.037 A^{md}	0	
${}^1G_4 \rightarrow {}^3H_6$	477	656.245	0.369	0.562
\rightarrow ³ F_4	650	166.704	0.094	
\rightarrow ³ H_5	787	697.530	0.392	
\rightarrow ³ H_4	1190	194.213	0.109	
\rightarrow ³ F_3	1537	53.499	0.030	
\rightarrow ³ F_2	1682	11.442	0.006	
$^{1}D_{2}$ \rightarrow $^{3}H_{6}$	360	6817.989	0.340	0.050
\rightarrow ³ F_4	450	10197.763	0.509	
\rightarrow ³ H_5	512	128.504	0.006	
\rightarrow ³ H_4	657	1418.674	0.071	
\rightarrow ³ F_3	750	685.136	0.034	
\rightarrow ³ F_2	783	659.184	0.033	
$\rightarrow^1 G_4$	1466	127.291	0.006	

从表 1 可以看出,除³ $H_6 \rightarrow {}^1G_4$ 的振子强度理论 计算值跟实测值相差较大外,其他能级跃迁都符合 得很好。 ${}^3H_6 \rightarrow {}^1G_4$ 的误差较大与这一吸收峰太弱

有关。综合看来,本实验均方根 δ_{ms} 为 0.49×10⁻⁷, 偏差比文献[9]小,比文献[10]大,回归是可靠的。 从表 2 可以看出:对于 $^{3}H_{4} \rightarrow ^{3}F_{4}$ 的跃迁,样品 A1 的荧光分支比小于 12%,同时³ H_4 的能级寿命 小于³ F_4 的能级寿命,因此,采用单一的 800 nm 波 长抽运,这一能级的发光效率很低。从 Tm^{3+} 的³ H_4 和³ F_4 的辐射寿命来看, 3F_4 的辐射寿命几乎是³ H_4 的 8 倍,由于下能级寿命比上能级寿命长得多,使得 ³ $H_4 \rightarrow {}^3F_4$ 跃迁会产生自终结现象,无法实现辐射跃 迁。从表 2 还可以看到 ${}^3H_4 \rightarrow {}^3F_4$ 辐射跃迁的荧光 分支比几乎是 ${}^3H_4 \rightarrow {}^3H_6$ 的 8 倍,这是利用 ${}^3H_4 \rightarrow {}^3F_4$ 辐射跃迁在 S 波段所不愿看到的,可通过共掺 Ho³⁺和 Dy³⁺来降低 3F_4 能级寿命的方法来提高 ${}^3H_4 \rightarrow {}^3F_4$ 辐射跃迁效率,这将在下一步工作中继续 讨论。

3.3 红外透射光谱

图 3 为玻璃基质样品在 400~1200 cm⁻¹范围 内的红外透射光谱。从样品的透射光谱可看出主要 由两个比较宽阔的吸收带组成,即:大致为 460~ 778 cm⁻¹,778~1100 cm⁻¹。460~778 cm⁻¹的吸收 可能由[SiO4]四面体结构单元的伸缩振动^[16]与 Al-F振动^[17]所引起;778~1100 cm⁻¹处的吸收归 因于玻璃中 Al-O 伸缩振动^[18]和 Si-O-Si 键的 各种振动^[16]。因此由红外透射光谱得到该玻璃的 最大振动能量应该小于 1000 cm⁻¹,与其它硅酸盐 玻璃基质相比,可望有效抑制 Tm³⁺的无辐射过程, 大幅度提高 Tm³⁺在玻璃中的发光效率,以便能作 为较好的光纤材料而得到实用。

3.4 荧光光谱

图 4 为在 808 nm 激光二极管激发下,样品在 1300~2200 nm 波段的荧光强度随 Tm³⁺掺杂摩尔分 数的变化关系图。在图中可以观察到 1.47 μ m 和 1.8 μ m的红外荧光峰,它们分别对应于 Tm³⁺的 ³ $H_4 \rightarrow {}^3F_4 \pi^{3}F_4 \rightarrow {}^3H_6$ 跃迁。从图 4 可以看出,随 着 Tm₂O₃ 掺杂摩尔分数从 1.0% 增加到 2.0%, Tm³⁺在 1.8 μm 处的荧光强度随之增加,而在 1.47 μm处的荧光强度反而减少,在 Tm₂O₃ 掺杂摩 尔分数达 2.0% 时,1.8 μm 处的荧光强度达到最 大。然后随着 Tm₂O₃ 掺杂摩尔分数的进一步增加 到3.0%,在 1.8 μm 处荧光强度开始明显下降。

图 4 Tm³⁺掺杂玻璃的荧光光谱

Fig. 4 The fluorescence spectra of Tm³⁺-doped glasses

这一现象可以用 Tm³⁺ 的交叉弛豫过程来解 释^[19]。交叉弛豫过程如图 5 所示,当 Tm³⁺ 受到 800 nm 激发光的激发时,处于基态³H₆上的电子被 激发到³H₄ 能级,当 Tm³⁺摩尔分数很高时,相邻的 两个 Tm³⁺之间的距离很近,由于能级³H₄、³F₄ 和 ³H₆ 的能量间距很匹配,相邻的两个 Tm³⁺之间就 会发生相互作用,产生能量转移,处于能级³H₄ 的 Tm³⁺把部分能量传递给基态³H₆ 的 Tm³⁺,自己跃 迁到能级³F₄,而处于基态³H₆ 的 Tm³⁺,自己跃 迁到能级³F₄,而处于基态³H₆ 的 Tm³⁺ 吸收那部分 能量,跃迁到能级³F₄,电子从³F₄ 能级跃迁到³H₆ 能级产生 1.8 μ m 的荧光辐射。这一过程即为交叉 弛豫过程,它可以表示为

 $Tm^{3+}({}^{3}H_{4}) + Tm^{3+}({}^{3}H_{6}) \rightarrow$

 $Tm^{3+}({}^{3}F_{4}) + Tm^{3+}({}^{3}F_{4})$

通过交叉弛豫过程,能级³ F_4 上的粒子数增加, 跃迁 ${}^{3}F_4 \rightarrow {}^{3}H_6$ 增强,发光强度增大;而跃迁

 ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ 受到限制,发光强度减少。当 Tm³⁺的摩 尔分数较低($\gamma = 1.0\%$)时,相邻的两个 Tm³⁺之间 的距离很大,其交叉弛豫相互作用不是太强,样品具 有一定强度的³*H*₄→³*F*₄跃迁(1.47 μ m)荧光发射, 在图 4 的 A₂ 中可观察到该波段的荧光。比较图 4 中的 A_3 与 A_2 样品可发现,当Tm³⁺摩尔分数逐步 增加到2.0%时,稀土离子间的交叉弛豫效应明显 增强, ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ 能级的无辐射跃迁增加, 荧光辐射 降低,导致1.47 μm 波段荧光强度的减弱与1.8 μm 荧光强度的增强。从图 4 可见,随着 Tm³⁺ 摩尔分 数的进一步增加(A₄),1.47 μm 与 1.8 μm 的荧光 强度均发生明显的猝灭现象,这主要是由于摩尔分 数猝灭效应与反交叉弛豫效应所导致。因此理想的 掺杂摩尔分数能获得最佳的 1.8 µm 荧光发射。该 玻璃系统中 Tm_2O_3 的掺杂摩尔分数应在 2.0%以 上。

3.5 跃迁截面

根据 McCumber 理论^[20], Tm³⁺的³ $H_6 \rightarrow {}^3F_4$ 跃 迁的吸收截面可通过样品的光密度计算:

$$\sigma_{\rm a}(\lambda) = \frac{2.303\rho(\lambda)}{nL},\tag{1}$$

式中, $\rho(\lambda)$ 是波长为 λ 处光密度,L为样品厚度 (cm),n为样品中Tm³⁺数密度(单位 cm⁻³)。受激发 射截面可以通过玻璃的吸收截面算出:

$$\sigma_{\rm e}(\lambda) = \sigma_{\rm a}(\lambda) \exp\left[\frac{(\varepsilon - h\nu)}{kT}\right], \qquad (2)$$

式中 ε 是与温度有关的激发能量,其物理意义是保持 温度不变,把一个 Tm³⁺ 从基态³ H₆ 激发到能级³ F₄ 所需要的自由能, $h\nu$ 为光子能量。应用文献[21]的方 法进行计算,求得峰值处的 ε =5754 cm⁻¹,k 为玻尔 兹曼常量,k=1.38×10⁻²³ J•K⁻¹,T 为样品温度。

图 6 跃迁³ $H_6 \rightarrow F_4$ 的吸收截面与跃迁³ $F_4 \rightarrow H_6$ 的发射截面

Fig. 6 Absorption cross section of the transition ${}^{3}H_{6} \rightarrow {}^{3}F_{4}$ and emission cross section of the transition ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ 由(1)式、(2)式计算得到的为样品 A1 的吸收截面和 受激发射截面如图 6 所示。 Tm^{3+} 的最大吸收截面和 发射截面分别位于 1.664 μ m 和 1.827 μ m 处,其峰值 分别为 0.313×10⁻²⁰ cm² 和 0.320×10⁻²⁰ cm²。

4 结 论

获得了 Tm³⁺掺杂摩尔分数为 0.5%的氟氧化物 玻璃 样 品 A1 的 J-O 参量 Ω_i 值 分 别 为 Ω_2 = 2.398×10⁻²⁰ cm², Ω_4 = 1.195×10⁻²⁰ cm², Ω_6 = 1.613×10⁻²⁰ cm²。Tm³⁺的³F₄能级具有较长的荧 光寿命和大的荧光分支比,说明这个能级具有较高 的储能特性。在波长为 808 nm 激光二极管激发 下,观察到 Tm³⁺的³H₄→³F₄(1.47 µm)与³F₄→³H₆ (1.8 µm)的荧光发射。在 Tm³⁺掺杂摩尔分数达到 2.0%, 1.8 µm 处 的荧光强度最大。对应发射 1.8 µm波段荧光的该玻璃系统的 Tm³⁺理想掺杂摩 尔分数为2.0%以上。根据 McCumber 理论,获得 Tm³⁺的³H₆↔³F₄ 跃迁的最大吸收截面和发射截面 分别为 0.313×10⁻²⁰ cm² 和 0.320×10⁻²⁰ cm²。因 此,该玻璃具有较强的发光效应,可望研制成波长接 近 2 µm 的红外激光器的基础材料。

参考文献

- 1 Y. H. Tsang, D. J. Coleman, T. A. King. High power 1.9 μ m Tm³⁺-silica fibre laser pumped at 1.09 μ m by a Yb³⁺-silica fibre laser[J]. Opt. Commun., 2004, **231**: 357~364
- 2 Zhang Yunjun, Wang Yuezhu, Ju Youlun et al.. Progress of Tm³⁺-doped fiber laser[J]. Laser & Optoelectronics Progress, 2005, 42(6): 34~38 张云军,王月珠,鞠有伦等. 掺 Tm³⁺光纤激光器的进展[J]. 激 光与光电子学进展, 2005, 42(6): 34~38
- 3 H. Lin, X. Y. Wang, C. M. Li *et al.*. Near-infraed emissions and quantum efficiencies in Tm³⁺-doped heavy metal gallate glasses for S- and U-band amplifiers and 1. 8 μm infraed laser[J]. J. Luminescence, 2008, **128**(1): 74~80
- 4 J. L. Doualan, S. Girard, H. Haquin *et al.*. Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm[J]. Opt. Mat., 2003, 24(2): 563~574
- 5 J. F. Wu, S. B. Jiang, T. Luo *et al.*. Efficient thulium-doped ~2 μm germanate fiber laser[J]. *IEEE Photon*. Technol. Lett., 2006, 18(2): 334~336
- 6 F. C. Guinhos, P. C. Nobrega, P. A. Santa-Cruz. Compositonal dependence of up-conversion process in Tm³⁺-Yb³⁺ codoped oxyfluoride glasses and glass-ceramics [J]. J. Alloys Comp., 2001, 323~324: 358~361
- 7 H. Sun, S. Xu, S. Dai *et al.*. Intense frequency upconversion fluorescence of Er³⁺/Yb³⁺ codoped novel potassium-bariumstrontium-lead-bismuth glasses[J]. J. Alloys and Compounds, 2005, **391**: 198~201
- 8 Duan Zhongchao, Zhang Junjie, He Dongbing et al.. Upconversion luminescence of Tm³⁺/Yb³⁺ codoped oxyfluoride glasses pumped at 970 nm [J]. Acta Optica Sinica, 2005, 25(12): 1659~1663

段忠超,张军杰,何冬兵 等.970 nm 抽运下 Tm³⁺/Yb³⁺共掺氧 氟玻璃的频率上转换发光[J].光学学报,2005,**25**(12):1659~ 1663

- 9 Junjie Zhang, Dongbing He, Zhongchao Duan et al.. Mechanisms and concentrations dependence of up-conversion luminescence in Tm³⁺/Yb³⁺ codoped oxyfluoride glass-ceramics[J]. Phys. Lett. A, 2005, 337; 480~486
- 10 Zhongchao Duan, Junjie Zhang, Weidong Xiang et al.. Multicolor upconversion of Er³⁺/Tm³⁺/Yb³⁺ doped oxyfluoride glass ceramics[J]. Mater. Lett., 2007, 61: 2200~2203
- 11 Liao Meisong, Fang Yongzheng, Sun Hongtao et al.. Structure, thermal properties and spectral properties of Tm³⁺-doped fluorophosphate glasses[J]. Acta Optica Sinica, 2006, 26(5): 713~719

廖梅松,房永征,孙洪涛等. 掺铥氟磷玻璃的结构、热学性质和光 谱性质[J]. 光学学报, 2006, **26**(5): 713~719

12 Zhang Long, Qi Changhong, Lin Fengying *et al.*. IR emission and frequency upconversion in Tm³⁺ doped fluoroaluminate glass [J]. Acta Optica Sinica, 2002, **22**(2): 233~237

张 龙,祁长鸿,林凤英等. Tm³⁺离子掺杂氟铝酸盐玻璃红外及 上转换光谱性质[J]. 光学学报, 2002, **22**(2): 233~237

- 13 B. R. Judd. Optical absorption intensities of rare earth ions[J]. Phys. Rev., 1962, 127(3): 750~761
- 14 G. S. Ofelt. Intensities of crystal spectra of rare earth ions[J]. J. Chem. Phys., 1962, 37(3): 511~520
- 15 S. Tanabe, K. Tamai, K. Hirao et al.. Excited-state absorption mechanisms in red-laser-pumped UV and blue upconversions in

Tm³⁺-doped fluoroaluminate glass [J]. *Phys. Rev. B*, 1993, $47(5): 2507 \sim 2514$

- 16 M. Sroda, C. Paluszkiewicz. Spectroscopic study of the influence of LaF₃ admixture on the crystallization and structure of borosilicate glass[J]. J. Molecular Structure, 2007, 834~836: 302~307
- 17 Fan Youyu, Yuan Xinqiang, Feng Jitian *et al.*. Effect of TeO₂ additions on the properties of fluoroaluminate glasses [J]. *J. Inorganic Materials*, 2006, 21(2): 339~345
 范有余,袁新强,冯际田 等. TeO₂ 对氟铝酸盐玻璃性质和结构的 影响[J]. 无机材料学报, 2006, 21(2): 339~345
- 18 Cheng Jijian, Zhang Guanlin, Bi Changhua. Structure and properties of R₂O(Na₂O,K₂O)-Al₂O₃-SiO₂ system glasses[J].
 J. Chinese Ceramic Society, 1979, 7(3): 245~254
 程继健,张关林,毕昌华. R₂O(Na₂O,K₂O)-Al₂O₃-SiO₂ 系统玻璃的结构与性质[J]. 硅酸盐学报, 1979, 7(3): 245~254
- 19 X. Zou, H. Toratani. Spectroscopic properties and energy transfers in Tm³⁺ singly and Tm³⁺/Ho³⁺ doubly-doped glasses [J]. J. Non-Cryst. Solids, 1996, **195**: 113~124
- 20 D. E. McCumber. Einstein relations connecting broadband emission and absorption spectra [J]. Phys. Rev., 1964, 136(4A): A954~A957
- 21 X. L. Zou, T. Izumitani. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er³⁺-doped glasses[J]. J. Non-Cryst. Solids, 1993, 162: 68~80